2.2: The Derivative Function

Definition: For a function f, we define the derivative function, f^{\prime}, by

$$
f^{\prime}(x)=\text { Instantaneous rate of change of } f \text { at } x=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

(I)

(II)

(V)

Exercise 1: Match each of the two graphs below to one of the derivative graphs above.

Exercise 2: Draw a possible graph of $y=f(x)$ given the following information about its derivative.

1. $f^{\prime}(x)>0$ for $x<-1$
2. $f^{\prime}(x)<0$ for $x>-1$
3. $f^{\prime}(x)=0$ for $x=-1$

Exercise 3: A vehicle moving along a straight road has distance $f(t)$ from its starting point at time t. Which of the graphs below could be $f^{\prime}(t)$ for the following scenarios?

1. A bus on a popuar route, with no traffic
2. A car with no traffic and all green lights
3. A car in heavy traffic conditions
(I)

(II)

(III)

Exercise 4: Sketch the derivative of the function $f(x)$ given below.

Exercise 5: Sketch the derivative of the function $f(x)$ given below.

